Combinatorics of diagrams of permutations
نویسندگان
چکیده
There are numerous combinatorial objects associated to a Grassmannian permutationwλ that index cells of the totally nonnegative Grassmannian. We study some of these objects (rook placements, acyclic orientations, various restricted fillings) and their q-analogues in the case of permutations w that are not necessarily Grassmannian. Résumé. Il y a nombreaux objets combinatoires associés à une permutation Grassmannienne wλ qui indexent les cellules de le Grassmannien totalement non négatif. Nous étudions certains de ces objets (placement de tours, orientations acycliques, diverses remplissages restrentes) et leurs q-analogues dans le cas où la permutation w n’est pas nécessairement Grassmannienne.
منابع مشابه
Bijective Combinatorics of Reduced Decompositions
We study the bijective combinatorics of reduced words. These are fundamental objects in the study of Coxeter groups. We restrict our focus to reduced words of permutations and signed permutations. Our results can all be situated within the context of two parallels. The first parallel is between the enumerative theory of reduced words and that of Coxeter group elements. The second parallel is be...
متن کاملAscent-Descent Young Diagrams and Pattern Avoidance in Alternating Permutations
We investigate pattern avoidance in alternating permutations and an alternating analogue of Young diagrams. In particular, using an extension of Babson and West’s notion of shape-Wilf equivalence described in our recent paper (with N. Gowravaram), we generalize results of Backelin, West, and Xin and Ouchterlony to alternating permutations. Unlike Ouchterlony and Bóna’s bijections, our bijection...
متن کاملMore Combinatorics of Fulton’s Essential Set
Abstract We develop combinatorics of Fulton’s essential set particularly with a connection to Baxter permutations. For this purpose, we introduce a new idea: dual essential sets. Together with the original essential set, we reinterpret Eriksson-Linusson’s characterization of Baxter permutations in terms of colored diagrams on a square board. We also discuss a combinatorial structure on local mo...
متن کاملCombinatorics of Arc Diagrams, Ferrers Fillings, Young Tableaux and Lattice Paths
Several recent works have explored the deep structure between arc diagrams, their nestings and crossings, and several other combinatorial objects including permutations, graphs, lattice paths, and walks in the Cartesian plane. This thesis inspects a range of related combinatorial objects that can be represented by arc diagrams, relationships between them, and their connection to nestings and cr...
متن کاملCrossings of signed permutations and q-Eulerian numbers of type B
In this paper we want to study combinatorics of the type B permutations and in particular the join statistics crossings, excedances and the number of negative entries. We generalize most of the results known for type A (i.e. zero negative entries) and use a mix of enumerative, algebraic and bijective techniques. This work has been motivated by permutation tableaux of type B introduced by Lam an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 137 شماره
صفحات -
تاریخ انتشار 2016